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Abstract

We study the problem of dynamically trading a pair of futures contracts. We
consider a two-factor mean-reverting model, where the spot price tends to evolve
around its stochastic equilibrium that is also mean-reverting. We derive the futures
price dynamics and determine the optimal futures trading strategy by solving a util-
ity maximization problem. By analyzing the associated Hamilton-Jacobi-Bellman
equation, we solve the utility maximization explicitly and provide the optimal trad-
ing strategies in closed form. Our strategies are applied to volatility (VIX) futures
trading, and illustrated in a series of numerical examples.
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1 Introduction

A major class of quantitative trading strategies across many asset classes involves con-
structing portfolios of positions in two or more highly correlated, comoving, or cointe-
grated assets, such as stocks and exchange-traded funds, or derivatives, such as bonds
and futures. In recent years, quantitative approaches have gained wide popularity among
both retail and institutional investors thanks to the availability of vast market data, sta-
tistical models, and efficient computing algorithms.

One important example is pairs trading, where two related securities are traded, com-
monly in opposite positions. As a result, the trader hopes to capture profits from di-
vergence and convergence while maintaining market-neutrality. A number of approaches
apply machine learning and optimization algorithms to identify mean-reverting portfolios
with a few assets from a larger collection of stocks (d’Aspremont, 2011; Zhang et al., 2018).
Typically in pairs trading the portfolio is static during the trading horizon. There are
numerical empirical studies on the empirical performance of pairs trading (Gatev et al.,
2006) and timing of trades given mean-reverting prices (Elliott et al., 2005; Leung and
Li, 2016, 2015; Kitapbayev and Leung, 2017).

In this paper, we combine the ideas of pairs trading and dynamic portfolio, and apply
them to the trading of two futures with the same underlying. We consider a two-factor
mean-reverting model, where the spot price tends to evolve around its stochastic equilib-
rium that is also mean-reverting. The model we work with is called the Central Tendency
Ornstein Uhlenbeck (CTOU), as studied by Mencia and Sentana (2013) for pricing VIX
futures. We determine the optimal futures trading strategy by solving a utility maximiza-
tion problem. By analyzing the associated Hamilton-Jacobi-Bellman equation, we solve
the utility maximization explicitly and provide the optimal trading strategies in closed
form. Our strategies are applied to volatility (VIX) futures trading, and illustrated in a
series of numerical examples.

Our work contributes to the literature on stochastic portfolio optimization. The sem-
inal paper by Merton (1971) introduced stochastic control theory and Hamilton-Jacobi-
Bellman (HJB) equation to portfolio optimization. Since then, there has been a wealth of
research that incorporates more realistic or market-specific features into the optimiza-
tion problem. For portfolio optimization when the assets are mean-reverting, Benth
and Karlsen (2005), Boguslavsky and Boguslavskaya (2004), Simonsen (2003) or Wachter
(2002) are early examples. Optimal stopping/switching approach, with features like trans-
action costs and stop-loss exits, are incorporated by Leung and Li (2015) and Pham and
Ngo (2016). On the front of trading co-integrating assets, Tourin and Yan Tourin and
Yan (2013) study a dynamic programming approach and provide analytical solutions and
numerical results for the associated HJB equation. For more related studies, we refer to
Leung and Li (2016) and references therein.

However, many assets individually are not mean-reverting, but a linear combination of
them are. This gives rise to the statistical concept of cointegration initiated by Engle and
Granger (1987), and the financial concept of pairs trading as described by Vidyamurthy
(2004). From an economic perspective, Xiong (2001) solve for the equilibrium in a market
populated with convergence traders, who are similar to traders practicing pairs-trading



in our context, along with noise traders and long-term investors. A recent survey of the
literature on statistical approaches to pairs trading is given in Krauss (2015).

On the other hand, futures has been an integral part of the global financial and
continues to grow. There are also existing studies that investigate cointegration and
trading strategies in the futures market. We refer to the representative paper by Bren-
ner and Kroner (1995), as well as Dolatabadi et al. (2016) for a recent application in
commodity futures. Leung et al. (2016) discuss the optimal timing to trade futures un-
der three single-factor mean-reverting post models. Bichuch and Shreve (2013) consider
trading a pair of futures but use the arithmetic Brownian motion and ignore the well-
observed term-structure patterns in the futures market. Yamamoto and Hibiki (2017)
examine large-scale multiple pairs-trading using a derivative-free optimization algorithm.
Angoshtari (2016) provides theoretical conditions under which the pairs-trading optimiza-
tion problem is market neutral. These related studies motivate us to consider a two-factor
mean-reverting model to effectively capture the price dynamics of futures, and develop a
stochastic control approach for pairs trading in the futures market.

The paper is structured as follows. We describe the two-factor mean-reverting spot
model in Section 2. In Section 3, we discuss our portfolio optimization problem and
examine some analytic properties. We provide illustrative numerical results from our
model in Section 4, as well as concluding remarks in Section 5.

2 Futures Price Dynamics

The two-factor mean-reverting model we consider is called the Central Tendency Ornstein
Uhlenbeck (CTOU). This model has been used for pricing volatility futures (see Mencia
and Sentana (2013)). One major feature of this model is the mean-reverting dynamics of
the spot price. Specifically, the spot price tends to evolve around its stochastic equilib-
rium, which is also mean-reverting. The CTOU is able to capture the stylistic features of
empirically observed mean reversion in volatility indices and commodity prices. Empiri-
cally, the spot price mean-reverts relatively faster than the stochastic equilibrium to its
long-run mean.

Moreover, our choice is also motivated by the model’s tractability. As we will see,
the structure of the associated stochastic differential equations (SDEs) is very amenable
to analysis and allows us to obtain closed-form solutions for the optimization problem.
As noted in Mencia and Sentana (2013), the simplicity of this model allows for easy
estimation, and it is shown that the model fits well with historical data empirically. They
further note that if a jump component is added, the resulting estimates become less stable,
which suggests a jump component would unnecessarily complicate model estimation and
application.

The spot price is denoted by V;. The spot’s log-price mean-reverts to a stochastic
equilibrium process #;, which in turn mean-reverts to its own constant equilibrium level
6. Under the risk-neutral measure Q, the log-price process and its stochastic equilibrium



follow the SDEs
dlogVy = k(0 — log V;) dt + o dZ?, (1)
df, = R(0 — 6,) dt + 5 dZ?. (2)
Here, the constants x and & represent the speeds of mean reversion for logV; and 6,
respectively, while o and & are the respective volatilities. The model has two independent
standard Brownian motions, Z; and 7?9, defined on the probability space (€2, F,Q), with
the filtration F generated by (Z7, Z7);>0.

To related the dynamics of logV; and 6; to the physical measure P, we specify the
market prices of risk as the constants ¢ and ¢. Under the physical measure P, we have

dzp = dzy — (dt, (3)
dz? = dz? — Cat. (4)

Note that the conditions under which the P measure is identical to Q is: ( = ¢ = 0.
Thus we can recover the dynamics of V; and 6, under the physical measure P as

dlogV; = (9#% —1ogw) dt + o dZ?, (5)
(- 5C e
Ao, =i (6+ 2> —9,) dt +5d2°. (6)
K

Remark 1 The CTOU model is a variation of the concatenated SQR (CSQR)
AV, = k(6, — V;) dt + 0+/V, dZ},
do, = k(6 — 0,) dt + /0, dZ?,

which has been studied by Bates (2012), among others, and is presented in Mencia and
Sentana (2013) as well.

We now consider futures contracts of different maturities written on the spot V. For
the futures contract with maturity 7;, i = 1,...,n, we define the price at time t € [0, T}
by

FO@,V,,0,) =E[Vp, | V4, 0]

We will continue to work with log prices for both the spot and its futures prices. Hence,
we define

vy = log V¢, (7)
FOt, vy, 0) = log FD(t,V;, 6,). (8)
From Appendix C of Mencia and Sentana (2013), we obtain the explicit log futures price:
ft(z') = f(z') (t, v, 0)
=0+ D(T; — t)(0, — 0) + e " (log V; — 6,) + g(l )
72 ( o )z (1 — e 2R(Ti—t) 1 _ o—2:(Ti—1) 1 — e(n+n)(Tit)) |

+ = + —2

2 \k—~kK 2K 2K K+ K



where . .
D(r) = e " — e .

K—K K—K

Since our objective is to dynamically trade a futures portfolio under the physical

measure P, we derive the SDE for ft(l) using Ito’s Lemma (see Appendix A).

5.H<€—R(Ti—t) _ e—K(Ti—t))

A = my(t) dt + oe "D dz0 4 dz?,

kK—K

where the drift is a deterministic function time, given by

e—R(Ti—t) B e—f{(Ti—t) o o 5 B L
m;(t) = T/@O’f + m(/@mﬁﬁ — kG + K*Co — 2Kk(CRo + (R o)
K/25'2 B B e_ZH(Ti_t)
—(k+R)(T3—t) _ —2R(T3—t) =2 2-2 2.2
+ Ar 2 (2e e )+ PEE R>2(2K,HU KRG — KO

In turn, we can write the futures price dynamics under P compactly as

d Ft(i)
Ft(i)

= i (t) dt + 0y (t) dZ + 09s(t) dZ?,

where all three time-deterministic coefficients are defined by

0ui(t) = oe "L,

i(f) = )
70 ( ) K—K
and
e M) kg —e T (k6 — k(o + (ko)
pi(t) = -
K—FK
o; t 2
2

where

0i(t)? = 04 (t)* + ogi ().
The instantaneous correlation between the two futures is defined by

o1 (t)ou2(t) + 091 (t)oe2(t)
01 (t)O'Q (t) ’

p12(t) =

which is a deterministic function of time only, independent of the state variables.

(9)

ko).

(10)

(11)
(12)

(13)

(14)

(15)

(16)



3 Utility Maximization Problem

Having established the dynamics of the futures prices in the previous section, we now
consider the utility maximization problem involving a pair of futures. Let T} and T, be
the maturities of the two futures in our portfolio. The optimization horizon will be denoted
by T'. Since the futures cannot be traded past expiry, we require 7; > T for ¢ = 1,2.
Using the futures price dynamics in (10), we write down the SDE for the portfolio wealth
process as

dw, = m(t, FY FP)dFY + my(t, FV, FPY dF®, (17)

where 7;(t, Ft(l), Ft@)), i = 1,2, denote the number of contracts, and positive/negative val-
ues mean a long/short position, respectively. For brevity, we may write m; = m;(t, Ft(l), Ft(Q)).

Re-writing in matrix form in terms of the two fundamental sources of randomness
(Zy,Z0), we get

AWy mupn () FY + mops (8) FP
dF | = () FY dt
dF” pa(8) F
1100 (O FY + 100 (O FP 1091 () FY + oo () FP .
+ oo () F oo () FY { dzg} . (18)
Toa () F? ooa(t) F) !

A pair of controls (7, ms) is said to be admissible if (71, 75) are real-valued, progres-
sively measurable, and are such that the system of SDE (38) defines a unique solution
Wy, FV, F)Y for every time t € [0,T] and (m, 7, FO), F®) satisfy the integrability
condition

T
E (/ [m1(s, FD, EPYFW2 4 [1y(s, FY, F§2>)F8<2>]2ds) < 0.
t

We denote by A; the set of admissible controls with an initial time of investment t.
Next, we define the value function u(t,w, Fy, Fy) of the following optimization problem:
the investor seeks an admissible strategy (7, m2) that maximizes the utility from wealth
at time T, that is,

u(t,w,Fy,F3) = sup E <U<WT) | Wy = U%Ft(l) = FlaFt(z) = F2> . (19)
(7r1,7r2)€.At
Here we only treat the case of the exponential utility function U(w) = —e™ 7" where v

denotes the constant risk aversion coefficient.

3.1 HJB Equation and Closed-Form Solution

To facilitate presentation, we define the partial derivatives by

ou _ Ou 0%u

“ET T ow T e
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Ou 0*u Ou 0?u
8_Fl’ Uil = 8_Fl2’ Ug = 8_]72’ Ug2 = a_F1227
0%u 0%u 0?u
Hwt = 8w8F1’ w2 = 8”[1)(91727 2 = 8F18F2
We determine the value function u(t, w, Fy, Fy) by solving the HJB equation

Uy =

Uy + sup (Wlul(t)Fluw + o iz () Fatiy

+ (101 (t)* F} + To(0u1 (1) 0u2(t) 4 091 () 092 (1)) F1L F2 )t
+ (m202(t)* F3 + m1(001 (1) o2 (t) 4 001(£) 092 (1)) FL )t
1

+ 5(71’%0'1(1;)2F12 + 7309 (1)2 F3 ) s

+ (mm2(0p1 ()02 (t) + o (t)agz(t))Fng)uww>

oq1(t)? oo(t)?
n 1(?) 2(2) Fiugy + 1 (t) Frug + pa(t) Fous
+ (G (00,5(8) + 01 (8)02(0)) Fi Pa — 0 2

Ffun +

subject to the terminal condition
w(T,w, Fy, Fy) = —e 7.
Next, we apply the transformation
u(t,w, Fy, Fy) = —e "G(t, f1, f2),
with f; = log I} and f, = log F5. By direct substitution, we obtain the PDE for G:
—e "Gy + Su;r) [ (M1 Fy 4 mopo Fo)ye ™G
+ (101 FE + Top1o0109 F L Fy)ye "G Fy + (ma03Fy + 1 p1ao102F1Fy)ye Gy ) Fy
+ %(WfoFf + 305 Fy + prom o109 F1 ) (—y2e Y G) |
+ i Fi(—e "G/ Fy) 4 paFy(—e 7 Gy / Fy)
+ %%Ff(e_W(Gl —Gn))/Ft + %gFg(e_w(GQ — Gn))/F;
+ p120109 F1 Fy(—e™ " Gha) / F1 F5 = 0, (21)

where we have defined the partial derivatives

oG 0G oG
Gt—g, Gl_ﬁ_fl’ Gz—a—ﬁ,
0°G 0’°G 0*°G
G = YR Gay = YR Gz = ar ar 0
Yo TR o TR 0ff

7



and suppressed the dependence on ¢, in pu;, 0y, 0y, 0g; and pio, in order to simplify

notation.
Cancelling e and rearranging, we get

—Gy+sup | (i Fy + mopa Fo)yG

1,72

+ (7T1U%F17 + Toyp120102F5) Gy + (7T20§F2’7 + myp120102F1) Gy
o? o2
— éﬂfFffG — ?QWSFSVQG — 727r17r2p120102F1F2G

2
o
- —(Gn - Gl) - 72(G22 - Gz) — p120102G12 — 1 G1 — poGa = 0,
with the terminal condition

G(T, f17 fg) - 1

Performing the optimization in (22), we obtain the optimal controls

L + G P12 12
V(1= piy)otFy  AGF V(1 = ply)oioaFy’
H2 L Go — 12 H1 _
V(1= piy)odFy  AGE: V(1 = ply)oi02Fy

7-('1(<t7F17F2) =

W;(taFlaFQ) =

(22)

(23)

(24)

Then we substitute the optimal controls as in (23) and (24) to arrive at a nonlinear PDE

for G

G, = (1/1—% +1 T _ Pr2fap2 )G
2(1- 9%2)0% 2(1— P%Q)U% (1- 0%2)0102

+ % (G%O’% + 2G1Gopra0109 + G%ag)
- %((Gll - Gl)U% + (Gaz — Gz)Ug + 2G12p0107).
To solve (25), we apply another transformation
G(t, fi, f2) = e~ 2. f1.f2)

to (25) to obtain a linear PDE for ®:

1 It 1 145 P12ji1 b2 )
0=, + (- +1 -
' 2(1- P%2)0% 2(1— P%Q)U% (1- 0%2)0102
i o3
+ = (P11 — P1) + = (Pog — D2) + p120102P12,

2
subject to ®(T, f1, f2)=0.
We can solve this linear PDE of ® by using the ansatz

(L, fi, f2) = an(t) fi + a1 (t) f1 + as2(t) f3 + as(t) fo + ara(t) fr fo + alt)

2

8

(27)



to deduce that
ahy (t) = aby(t) = aly(t) =0, ay1(t) = ag(t) = ax(t) =0,

ay(t) = ay(t) =0, ai(t) = as(t) = 0.

From this, we deduce that ® is a function of ¢ only, independent of f; and f5, and satisfies
the first-order differential equation

Ao u(t)?02(t) + pa(t)*01(1)* — 2p1a(t) i (Do () (H)oa ()

dt N 2(1 — plg(t)2)0'1<t)20'2(t)2
Solving this and applying (13), (15), and (16), we obtain a closed-form expression for ®.
Precisely,

(I)(t) _ (T_t) <2€2+<2) (28)

Unraveling the transformations, we write the value function as

U(t, w, F17 FQ) = 6_7w+¢(t) (29)

Very interestingly, the value function depends on only two model parameters, namely,
the market prices of risk ¢ and (, along with the optimization horizon T. Moreover, the
value function does not depend on the two futures current prices (F}, Fy). The simplicity of
the value function is unexpected, especially since there are two stochastic factors and two
futures in the trading problem. This is a very useful result that shows clear dependence
of the value function on the two model parameters (see Fig. 2 below). Nevertheless, it
does not mean that the corresponding trading strategies are trivial. In fact, the strategies
depend not only on other model parameters but also the futures prices, as we will discuss
next.

3.2 Optimal Wealth Process

By applying (26) and (28) to (23) and (24), we obtain the optimal trading strategies (i.e.
cash amounts invested in the futures)

. 1 pa(t) pia(t)

w6 o) =~ S (o~ ) o
) B 1 pa(t) fa(t)

mall B o) = V(1 = pr2(t)?)oa(t) Fo (02(75) - pn(t)m(ﬂ) . (531

We recall (13), (15), and (16), and express the optimal strategies explicitly in terms of
model parameters. Precisely,

—€_R(T2_t)/€ca' 4 e r(T2=t) (FLC& + /{EU — /%C_O')

T (t, F1, F) = et(s+F) (e=FTi=rTe — o=KTi=RT2) oyGo Fy

: (32)

e "0 k(5 — e (ko + k(o — RCo)

5 (t, F1, Fy) = MHR) (e—RT1—T2 _ o—Ti—FT2) gy Fy

9



Note that the optimal controls are functions of time and the futures prices, but not
functions of the spot price V; and its equilibrium level 6;. In contrast to the well-known
Merton portfolio under the exponential utility, the optimal strategies 7] and 73 here are
independent of the trading horizon T or time ¢. The strategies are inversely proportional
to 7, as is expected. For each i € {1,2}, the optimal strategy 7} depends only on the
corresponding futures price Fj, but not the other futures price.
If we substitute the optimal controls 7} and 75 into the wealth process (17), we have
AW (t) = mt dFY + 75 dF?
= FM g () dt + 75 FP o (1) dt+
+ (Wfavl(t)Ft(l) +7T§0v2(t)Ft(2)> dZ; + (”fﬁel(t)ﬂ(l) + 7T§002(t)Ft(2)> dz{

= pw dt + ow dZtW, (34)
where we have defined
pw = T FD i (1) + 73 pa(8),

2 2
oy = (Wi‘am(t)Ft(l) + wgavg(t)pt@)) I (WT091(t)Ft(1) I 7r>2k092(]5)Ft(2)>

Direct computation simplifies py, and oy to

w = : and oy = = tw,
v Y Y

(35)

Substituting (35) into (34) implies that the optimal wealth process is in fact a Brownian
motion with constant drift puy and volatility oy parameters. As a result, the optimal
wealth depends on the market prices of risk, ¢ and ¢ (see (3)-(4)), as well as the investor’s
risk aversion parameter 7.

4 Numerical Implementation

We will now further examine our results with numerical examples with simulated and
empirical data. For our examples, we will set v to be 1, and use the estimated parameters
from the “full sample” in Table 4 of Mencia and Sentana (2013), which are displayed here
in Table 1.

K K 6 o o ¢ ¢
5.827 | 0.300 | 3.019 | 1.037 | 0.446 | —0.010 | 2.242

Table 1: CTOU model parameters

10



According to Section 3 in Mencia and Sentana (2013), the parameters are obtained
from maximization of the so-called pseudo likelihood in state-space modeling, which is
described in more details in Trolle and Schwartz (2009). The parameters so obtained
were further tested by comparing to VIX option prices and compared on the basis of
Root Mean Square Error (RMSE). As noted, one of the advantages of the CTOU model
is its tractability, and in the context of estimation, the continuous time SDE for log V;
and 6; can be easily written as a Gaussian VAR(1), for which the transition density are
known in closed forms.

In Figure 1, we show the dependence of the optimal trading strategies, 77 and 7J,
on the volatility & of the stochastic equilibrium 6, in the CTOU model. Observe that
7} is positive and increasing concave while 7] negative and decreasing convex. With the
parameters given in Table 1, we are short the Tj-futures F) and long the Ty-futures F'®).
When we rearrange the formulae (32) and (33) for 7] and 75, and collect terms involving
o, we see that for both ¢ = 1,2, the optimal strategies are of the form A; + B;/a, which
means that the absolute value of the each strategy m decreases as o gets large, with
other variables held constant. The practical consequence is that the number of contracts
held, on both the long and short sides, are decreasing as the volatility of the stochastic
equilibrium increases. This is in line with a risk-averse trader’s intuition, who would
prefer less exposures on both legs of the paired-trade, if the volatility of the stochastic
equilibrium is high.

Figure 2 illustrates how the optimal trading strategies, mj and 73, vary with respect
to the time-to-maturity. We see the number of contracts to buy, or to sell, are both
increasing as maturity increases, with 7 becoming more negative and 73 more positive.
From the trader’s perspective, this corresponds to taking bigger positions in the long end
of the futures curve. As is well known (Alexander and Korovilas, 2013), the volatility of
longer-term VIX contracts are in general lower than the short-term contracts. Therefore,
under the CTOU model with parameters as calibrated to the VIX futures price history, it is
optimal for the risk-averse trader to make larger bets on the pair trade when the contracts
are far from maturity since volatility is lower in the long end as observed empirically.

In Figure 3 we compare the optimal trading strategies, 7} and 7 (for two futures)
to the optimal strategy 7} for trading a single futures. The case of dynamically trading
a single futures is discussed in Appendix A.2 below. The optimal strategy is explicitly
given in (37). As in Figure 2, we plot the strategies as functions of T;, using same
set of parameters. When trading a single contract, either with maturity 77 or 15, the
corresponding optimal strategy, 7] and 73, is positive. This is in contrast to the two-
contract case where the optimal strategies, 7] and 7, are of opposite signs. This is
intuitive because when two contracts are available, along with the fact that the two
futures are based on the same sources of randomness, risk aversion drives the investor to
reduce risks by taking long and short positions simultaneously.

A related question is: when only one contract is traded, does the investor favor the
longer or shorter maturity? As we can see, 75 is greater than 7j. This means that, given
only one contract is available, the trader tends to take a larger position in the contract
if it is further away from maturity. When we compare the long and short positions in
the two-contract case to the single-contract case in terms of position size, we can see the

11



optimal long-short strategy requires taking bigger positions in both contracts than either
position in the single-contract case.

Using historical VIX futures data, we consider two contracts, one with maturity Jan-
uary 2011 and the other with maturity February 2011. We show the empirical optimal
positions over the period October 2010 to December 2010. This period is chosen to corre-
spond to the post-calibration period of the full sample in Table 4 of Mencia and Sentana
(2013). Over this post-crisis period, the market was relatively calm compared to the mar-
ket during the crisis, with the VIX index hovering around 20. Applying our the explicit
formulae for the strategies, we compute 7}, 73, and 7} + 75 based on the daily settlement
prices of these contracts as well as the parameters in Table 1. As shown in Figure 4, the
optimal strategy 7} is negative throughout this period, corresponding to a short position
in the front-month contract, and the opposite holds for 75. However, the absolute value
of position of 7} is larger, leading to a net positive position.

We now turn our attention to the value functions. To distinguish between the single-
contract and two-contract cases, we let @) denote the value function in the single-contract
case with the superscript (i) indicating the maturity 7; of that single contract in the
portfolio. In Figure 5 we plot @V, 4® and u as functions of ¢, and set w = 0. We observe
that the maximized expected utility from trading two contracts simultaneously is greater
than the maximized expected utility derived from trading only a single contract regardless
of the choice of maturity. In fact, the value function u is larger than the sum of the two
value functions @) and 4(®). This makes sense since the single-contract case can be viewed
as two-contracts case but with one strategy constrained at zero. Effectively, the single-
contract case is restricting the admissible set A;, thus reducing the maximum expected
utility. Our result confirms the intuition that more choices of trading instruments are
preferable to fewer.

Next, we consider the certainty equivalent for the trading opportunity in the two
futures with wealth w at time ¢. Recall that the value function is in exponential form

U(t, w, Fl, FQ) = —eivwicb(t).

We define the certainty equivalent by taking the inverse of the exponential utility function.

Precisely, we have
Ct,w) =w+ @
v
As we can see, the certainty equivalent is the sum of the investor’s wealth w and the
positive value M) The latter is inversely proportional to the risk aversion parameter .
Like the value function, the certainty equivalent does not depend on the current futures
prices (F1, F3) but it does depend on the model parameters that drive the futures prices.
We now evaluate the behavior of C' at time ¢ = 0 and with zero initial wealth W, = 0.
In other words, we will examine the following quantity:

and its sensitivity with respect to as we have plotted in Figure 6. In Figure 6 we plot the
certainty equivalent against the price of risk. From (28) it is clear that Cp is quadratic in
¢ and ¢ under the CTOU model, and tends to infinity as the prices of risk increase.
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¢ = 2.242 as displayed in Table 1, at 77 = 30/365 and T5 = 60/365.
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Figure 2: Optimal controls 7} and 73 as a function of T} and T respectively,
under the CTOU model, with parameters as displayed in Table 1, and T}
ranges from [30/365,60/365], and T, ranges from [60/365,90/365].
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T, ranges from [60/365,90/365].
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and ¢ under the CTOU model, with parameters as displayed in Table 1.
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5 Conclusions

We have analyzed the problem of dynamically trading two futures contracts with the
same underlying. Under a two-factor mean-reverting model for the spot price, we derive
the futures price dynamics and solve the portfolio optimization problem in closed form
and give explicit optimal trading strategies. By studying the associated Hamilton-Jacobi-
Bellman equation, we solve the utility maximization explicitly and provide the optimal
trading strategies in closed form. In addition to the analytic properties of our solutions, we
also apply our results to VIX futures trading and present numerical examples to illustrate
the optimal holdings.

There are a number of directions for future research. The method employed in this pa-
per extends to a multidimensional setting higher than the 2 factor models considered here,
such as a three-factor model with the addition of stochastic interest rate (see Schwartz
(1997)). It will be also be interesting to incorporate other features such as stochastic
volatility into the spot price dynamics, for example in the model described in Li and
Tourin (2016), or jumps diffusion, as in other models described in Mencia and Sentana
(2013). However, under more complicated models, the value functions and the optimal
controls will likely require numerical approximations. Furthermore we will leave to future
research to investigate the profitability of strategies based on our models using historical
data.

A Appendix

A.1 Drift of df\" under CTOU

By Ito’s Lemma, the drift of dft(i), denoted by m;(t), is given by

(%) (%) 5C (4)
mi(t)zdf +/1(6’+%C—v)df +li(9_+%<— )df

dt dv do

We have the following derivatives

2

Lt N2 o _
(e/{Tertn _ entJrTzn) ,{20.

M — o F(Ti=1) (v—0)—
dt 26213 (m+7) (15, — ,7{)2
<e—n(T¢ft) _ e*R(Tift)) KR (é _ 0) e—2n(Ti—t) o2

+ Kk —Fk 2 ’

o¢  \dfO(t0,0) (i ol N\ dO(tv,0)
/ﬁ(@—i—?—v)T—l—rﬁ(@—i— —6)7—

e~ R0 (e5(TiD g (OF — Ok 4+ 6¢) + "D (C(k— R) o — (k (k (v — 0) + (6 — v)E + 5())))

R—K
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In turn, we obtain

e—R(Ti—t) B e—fi(Ti—t) o o ) B L
m;(t) = T/wf + m(ﬁamﬁ — k°0€ + K*Co — 2Kk(CRo + (R o)
K/25'2 B B e_ZH(Ti_t)
—(kAR)(Ti—t) _ —2R(Ti—t) -2 2.2 22 .22
+2(/€—/_§)2(2€ e )+2(/<;—F;)2(2/m0 K°0° — K°0° — R°0°).

Interestingly, the drift is a deterministic function of time, and does not depend on v,
0;, and 0. To see this, we collect v, § and 0 in m;(t), and get

df(i)(t’ v,0) Tt 2 52 (enTi+tk _ 6m+Tm)2 . 0kE (efﬁ(Ti*t) e n(Tﬁt))
—_— L = g KU —
dt 2e2Ti (v+5) (5 — k) K—R
Py (G*R(Ti*t) B — e r(Ti—t) ,{) e~ 26 (Ti—t) 52
+ — - )
K—R 2

df(t, v, 0
K <9+U—C—v) % = ") g4 T (Co— k),
K v

= -

R <9+ % _ 9> FO(,0,0)  Brr ("0 — or(Tion)
KR

do K— R K — R
— ~ —/_{(Ti—t) _ —K (Tz—t)
RO e e
RO (D — o)
K —KR

When added together, the terms involving v, 6 and € cancelled out, and we are left with

(9)-

A.2 Portfolio with a Single Futures Contract

We now discuss the case when the portfolio consists of only one futures contract (of
maturity 7;). The system of SDEs for the wealth process and futures price is

{ W, } _ [ﬁlul(t)Ft(l) B%} , (36)

dFY i () F
where we use the tilde notation to denote the single-contract case. In order to avoid
confusion when we later compare the optimal controls and the value function to the two
contracts case, we keep the subscript i in 7; = 7;(¢, F;) to denote the optimal control in
the single contract case when the contract has a maturity of T;,7 = 1, 2.
We expect the value function a(¢, w, F) to solve the HIB equation

7?10'1,1 (t)Ft(l) 77'10',91 (t)Ft(l)
onFY o (t)FY

_ - _ _ 1. _
Uy + sup [ 71y (1) Pt + 7101 (8)° FL it + 577101 (8)* FY i |
US|

2
+ Ul(t)2

F21yy + pu (t) Fiy = 0,
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and the optimal control 7] is given by

awﬂ/l (t) + Flﬂwlo'l (t)z

%T(@ Fl) = Flawwal (t)Q

After substituting in 7}, we have the equation

a2 (t)? Pyl pin (1) Fr (200 Gy (t) — Fy (G2, — U)o (t)?)
= = +
20001 (1)? Uy 2Uy

t
Next, we apply the transformation
u(t,w, Fy) = —e_w’eé(t’fl),

where f; = log I}, and the tilde on ® to again denote the single contract case, to get the

PDE for @ as o o
=~ M1 t 01 t = =
—P, = b — O

subject to Q:)(T, f1)=0. We see that ® is a function of ¢ only, and it satisfies

Ao > (PP keg— e MY (k5¢ - k(o +(Ro))
dt 20, (t)Q 5 (H B R)2 ((e—n(Tl—t)—(e:"()Zl—t))Q K2 52 P 02) .

In turn, we numerically evaluate the integral

(f(t) _ /tT fu(t)? dt'.

201 (t/)Q

Now if we express the optimal control in terms of ®, we will have

pa(t) — Ul(t)Q(i)l . fa(t)

5 (t. Fy) = =
R = T R YRt

since ® is a function of ¢ only. We can see from (37) that 7} is identical to that in the 2
contracts case, when pio(t) as defined in (16) equals zero. Explicitly, the optimal strategy
77 in the single-contract case is given by

_ (o= R(T1—t) 5 £)+e " (Ti—t) (5 £E—¢ +(R
. e oK e oK ko+(Ro
T p— ) : )

(37)

- 2
e—r (T1—t) _eg—F (Tl—t)) 52 k2

7Fy (R — k) (( (=) +e72r(Ti=0) 02)
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A.3 Portfolio with Three Futures Contracts

Let us consider a portfolio of three futures contracts with different maturities T3, 75 and
T5. The wealth along with the futures prices follow the SDEs

AW, T (t)Ft(l) + o flo (t)Ft(2) + Wgug(t)Ft(?’)
ar| O dt
dE> | pa(t) F”
dFt(g) M3 (t) Ft(3)
o FY + 1000 D + w30, mop B + maoga F + w0 FL)

+ o by oo " {dZtv} . (38)
Uu2Ft(2) 092Ft(2) dZte
Uv3Ft(3) 093Ft(3)

We expect the value function u(t, w, Fi, Fy, F3) to solve the HJB equation

wg+ sup [ myp () Fiuy + mopa(t) Foty + m3pa(t) Fyuy,

1,702,733
+ Fi(m101(t)°Fi + m2(001002 + 001002) Fs + T3(001003 + 091003) F3 )
+ F5(m1(001002 + 001002) F1 + T202(t)* Fy + T3(002043 + 092063) F3 ) o
+ F3(m1 (001003 + 001003) Fi + T2(0 02003 + 092003) Fo + m303()* F3) s
+ ((Fym100) + Foma0yg + Fym30,3)? + (Fimiog1 + Famaogs + Fym3063)? ) U |

t)? t)? t)?
Ul<2> F12U11 + —U2<2> F22UQ2 -+ J3< )

+ g (t) Frug + po(t) Foug + ps(t) Fsus + (0v10v2 + 001002) F1 Fours
+ (0010p3 + 091003) F1 Fsuig + (042003 + 092003) FoFiugs = 0.

+

2
F3 Uus3

To solve for the optimal controls 7y, 7o, 73, we impose the first-order conditions. This
leads to the following system of equations:

2 2
Ffoi FiFy (01002 4+ 091002) F1F3(0010,3 + 0g1003) | |1
2 92
U | F1F2(001002 + 091002) Fjo;3 FoF5(002003 + 092003) | | T2
2 2
F\F5(0p1003 + 091093)  F2F3(0,2003 + 092003) Fio3 3

Frugpn + Ffuwla% + Fy Fytuys (001002 + 091092) + F1 F3ty3(0p1003 + 091003)
= — | Fatpta + F1 Foty1 (051002 + 01002) + F3tueos + FoF3u,3(0p0,3 + 092003) |
Fyuyps + Fi1F3uy (001003 + 091003) + FoF3tys (002003 + 092003) + Fitiy303
(39)

which is in fact singular.
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